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ABSTRACT

A  numerical/analytical procedure has been
developed which yields the optimum amount of rein-
forcement for a given hole shape in a large elastic
plate under prescribed boundary stresses. This pro-
cedure is based on determining the usual two complex
potentials which describe the entire stress field,
constructing the strain energy density function in
terms of the unknown amount of reinforcement,
integrating this ftunction around the opening boundary,
and finally minimizing this integral with respect to
the reinforcement.

The method is first developed for a general hole
shape and then demonstrated in some detail for a cir-
cular and a square-like opening.

INTRODUCTION

The use of reinforcements at the boundaries of openings is standard prac-
tice in ship and aircraft construction. The amount of reinforcement to be
used is determined, in most cases, by somewhat arbitrary decisions regarding
the percentage reduction it produces in the boundary stress maximums.
Although intrinsically there is nothing wrong with this approach, it seems to
lack a rational basis or criterion for helping the structural designer select
a specific amount of reinforcement., The procedure presented in this paper is
an effort to provide such a basis. Rather than determining the stress field
corresponding to a given geometry of the opening and of the reinforcement,
this procedure seeks to determine that reinforcement which minimizes a certain
meaningful integral related to the boundary strain energy. In this way it is
an 1inverse elasticity problem. Some investigators - » 1n studying the
related problem of optimizing unreinforced notch shapes in plates, have con-
cluded that uniform tangential stress at the notch boundary would, in general,
lead to the smallest stress concentrations. Intuitively, it appears justified
to assume that in the case of reinforced notch boundaries the requirement of
uniformity of boundary stresses and/or stress related quantities, such as
strain energy etc., at the notch boundary would lead to more desirable
designs. The optimization rationale used in the present procedure is based on

this argument.
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In general, stress analysis of a non—-circular opening reinforced with a
thin member of uniform cross section is very difficult because it requires the
satisfaction of a boundary condition which contains an irrational term. How-
ever, the use of MACSYMA (a symbolic manipulation language developed at MIT
and in use at DTNSRDC) makes it possible to solve such problems, since a
larger number of terms can be retained and manipulated in various expansions
without losing track of them in the enormously long and complex algebraic

expressions.

The general form of the boundary condition wused in this method is
developed 1n reference 4. The special cases of reinforcement of a circular
opening and a square-like opening are discussed in greater detail and actual

numerical results are included.

This paper is a logical extension of the work described in reterence 5
which dealt with the optimization of the shape of a class of unreintorced

openings in large plates.
MATHEMATICAL PRELIMINARIES

An opening of general shape in a large elastic plate of isotropic
material of wunit thickness is reinforced by a thin member of cross-sectional
area A capable of withstanding axial forces only. Then, if the opening can be
mapped into a wunit circle by a function z(L), the equivalence of complex
torces between those in the reinforcement and those in the plate at the open-

ing boundary (¢ = 0) is given by %

1) + 22 o)+ Yo = o \/——Z'(O) + C (1)
Z'(O) Z'(O)

where $ (0) and ¥ ( 0) are the values of the functions d (¢ ) and

Y (7) at the opening boundary, P is the axial force in the reinforcement,
o0 equals e*, and C is an arbitrary constant. Equivalence of tangential

strain at the boundary requires

P = A(Os-yoa) (2)
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and the elastic equilibrium of a boundary element requires

(3
1L @

TGB "zv;v B

where the argument O of the function z has been omitted for brevity and

prime indicates differentiation with respect to 9 .

The well-known relations between the stresses, Ga , OB , and TGB and

the functions, ¢ ( ¢) and ¢ ( z), and Equations (2) and (3) can be used to
show that

P ¥Vz'Z' [A (1+v) + z'E'] = 20 (" z'+ ¢' 2" (4)
Equation (1) can be modified to

b+ zZ' + z¢' = o P V' (5
where the argument ¢ has been omitted, for brevity, for the ¢ , ¢ , and
z functions; prime indicates differentiation with respect to the argument 0
and a bar (-) represents the complex conjugate of the function. Since P is a

real quantity, it is possible to represent
p Vo't = 2 e "+l (6)
n=0 o

where the c, are real. PFunctions ¢ (L) and V¥ ( §) are known to have the

following form: a
n
¢(z) = Sg +Z_c;
(7

b
¥ =pz + 1
:
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where P+ q
S =
4
P-q _
D=w—— e 216
2

and p and q are uniform stresses at infinity at an angle 8 to the x- and y-
axes, respectively. The mapping function z( %) can be conveniently

represented by

m
22y =R [z +D2. " (8)

n

g
where mn are known constants and R is a size factor which will be assumed

unity.

The problem can now be stated in two parts: (a) For a given mapping func-
tion 2z(%), determine the functions 9 (Z) and V(L&) as a function of the
area of reinforcement A; and (b) determine that value of A which minimizes a

certain meaningful integral related to the boundary strain energy.

Clearly the solution of part (a), which forms the basis for the solution
of part (b), would require the determination of a, and bn such that Equa-

tions (4) and (5) are satisfied.

Substitution of Equations (6), (7) and (8) into the boundary condition,
Equation (5), and its ensuing solution generates one set of linear simultane-
ous Equations between an and €n and another set between an , bn ,
and ¢, , both of which satisfy this boundary condition. Values of a, in
terms of €, can be determined from the first set and substituted in Equation
(4) to determine Cn in terms of A by using an expansion of the irrational
term z'z' . Taylor series expansion of this term at & = 0 appeared to
be a reasonable choice, and it was seen that, for the demonstration problem ot
a square-like hole, an accuracy of 1 in 106 could be obtained at the hole
boundary by using the first eight terms after the constant term. OUnce
the C, are known, the two sets of simultaneous equations can, in principle,

be solved to obtain 3, and bn in terms of the unknown quantity A. The




basic information for the optimization problem is then available.
OPTIMIZATION

The strain energy density, Vo ,» of a plane elastic system is given by

_ 1 2 2 2
Vo = 35 [oa + og" - 2voao + 2(1+v)ra8 ] (8)

8

with Equations (2) and (3), this expression for Vb can be transformed to

1 ) [2 4 20+ 2, 4G+ (apY
Yo T IE [A2+ ] P +',——,<ﬁ> (9

-
z Z zZ Z

The area of reinforcement, A, as it occurs in Equation (9) 1is a dimen-
sionless quantity since it has been divided by the unit thickness of the plate

as well as by the unit size factor R of the mapping function.

For specific loading conditions, the strain energy density, Vo , a func-
tion of B and A only, can be integrated with respect to B8 from U to
27 to obtain an integral, I, which can be interpreted as the strain encrgy
in a thin region of variable thickness around the opening. This integral can
now be minimized with respect to A to obtain that value of A which leads to
the “most wuniform” distribution of V0 around the opening. The term “"most
uniform” conveys the meaning that, of all the possible parametric variations
of Vo corresponding to A, this particular distribution would have strongly

attenuated peaks.5

A distinction must be made between this integral, 1, and the actual
strain energy, V, in a thin slice around the opening. The strain energy

itself will be obtained by integrating Vo with respect to ds. Since ds is

given by z'z' dR , the strain energy will be
v ===fvo z'z' dB (10)
5
2t S e R L —n————




It can be expected that a minimization of V with respect to A will lead
to the "most wuniform” distribution of VO\I;TET rather than that of
V0 around the opening. The integral, 1, was previously calculated, within a
constant, in reference (5) for a square-like unreinforced opening to determine
its optimum shape. For $ = .25 and D = -.5 the integral,I,was found to have a
minimum value of 0.3627 at m = -.05. This value of m produced a very desir-
able stress distribution and the lowest stress concentrations since for an
unreinforced opening the integrand, Vo , of 1 was 082 . For comparison,
when this case was later repeated by minimizing V such that the integrand was
»)? z2'z! , the minimum value of V within the same constant was found to be

U.3705 at m = -, 07. The corresponding stress distribution around the opening

is less desirable than when m = -.05. In fact,the highest stress concentra-

tion ftor m = -,07 was 2.505 versus 2.472 for m = ~.05. Nevertheless,

the WH? 2'z' distribution can be expected to be "most uniform” at m = -.07

and the ﬂ”?- distribution is the "most wuniform” at m = -.05. From an

cnginceriné stand point the "most uniform” 082 - distribution will

vbviously be preferable. Other more mathematical reasons for choosing to
2

minimize the integral of 08' are included in reference 5.

The preceding discussion justifies the use of the integral, 1, rather
than the strain energy, V, as the quantity to be minimized for determining the
optimum A. in summary, minimization of 1 should, 1n general, be expected to
lead to the “"most uniform” V0 - distribution and minimization of V to the
"most unitorm” Vo z'z"' - distribution. Lt can also be expected, as evidenced
1in the case of the unreinforced square opening, that "most uniform” Vo -

distribution would result in smaller VO values.

at this point it should be mentioned that consideration was also given to
determining optimum A based on attenuation of other relevant quantities such
as the distortion energy density (equivalent to attenuation of the octahedral
stress), the aitatation energy density, the maximum shear stress, and the mux-
1mum principal stress. ALl these quantities except the last are either uas
ditficuit or, in fact, simpler to attenuate than the strain energy density.
Since the attenuation of the maximum principal stress is in general, consider-
4bly more difficult to perform (and not necessarily most desirable), the

strain energy density was selected, in the case of the square-like hole, as a

6




typical quantity to be attenuated. In the case ot the circular hole other

quantities were also investigated for comparison.
EXAMPLES
l. Circuiar OUpening

in thi1s case the 1rrational terms in Equations (3), (4), and (5) disap-
pear, so the manipulations are rather straight torward. Another point to be
noted 1s that for a circular opening the strain energy, V, is the same as the
integral ¢, Umitting all the intermediate manipulations, the strain cucizy,

V, can be given by

g | 201 + 0.01a%)s% | (1 + 1131A%D"

v=1-= (liay
E 2 2
(1 + 1.34) (1 + 3.3A)
the energy ot distortion, VD , or the integral of the square ol octahedra.
2
stress, Toct , can be given by
2
2 2,2
v - IZ” 3ot 1 13.867n |201-0.4a40.7987)s” | (1-0.4a412.7980D° |
a B 2
b 9 2E 2E 1+ 1.3 (1 + 3.38)
the energy due to change in volume, vV, , can be given by
2.133 2 (1 +1 3A)2 2
v, = S 2t 4 STt p (11c)
M (1 + 3.3A)

and tinailly the integral, T, of the square of maximum snear stress can b

given by

2(1 - 1.4a + 0.49808% | (1 - 148+ 16.49A%)n°
(1 +1.38)2 (1 + 3.34)°

T = 16mw (11d)

aF ARk R i
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TABLE 1 - OPTIMUM VALUES OF REINFORCEMENT FOR A CIRCULAR HOLE
SUBJECT TO VARIOUS TYPES OF LOADS:

ATTENUATED STRAIN DISTORTION VOLUME MAX SHEAR
QUANTITY ENERGY ENERGY ENERGY STRESS
\\\\\\\\\\\\\\‘ DENSITY DENSITY DENSITY SQUARED
LUAD
CASES v A " A \ A T A
[¢] D v
isotropic 2.8m 1.733m 1.0677 *
5=U.5; D=y 7F 1.4286 T 1.4286 7E - 0 1.4286
[}
Lniaxial 3.074w 2.584n 0.3497 %%
S=0.25; D=-0.5 ToE L4429 7E L4033 2 | ” 2.717n] .3422
Pure Shear 8.157 7.072n 0.331w *k
5=U; Db=-—1i oE -2918 E $2602 | == @ 8 .2127
* - Indicates that V is independent of A
** - Infinity refers to a rigid reinforcement
The quantities V, VD » Yy , and T were minimized to determine the

optimum values of A. These computations were performed for a number of load
cases ds shown in Tablie 1. The values of A at which the minimums occurred and

the corresponding wminimized quantities are included in this table.

the tact that such optimum reinforcements can exist is intriguing. A
popular definition of A is the ratio of area replaced as reinforcement to the
ared removed by the opening. Thus in the wuniaxial case, if approximately
44.3% of the area removed by the opening is replaced by the reinforcement, the
resulting stress distribution would be very desirable, i.e., one that would
result in a relatively smooth boundary strain energy density distribution.

The actual stress distributions corresponding to the cases in Table 1 can be

obtained using equations derived in reference 6.




' 1I. Square Opening

The algebraic manipulations in this case are considerably more involved ’

and lengthier than for the circular opening. A square opening described by s
< 2 =g - 0.25 (12)
% g

was chosen for this example because of its optimum square-like shape5 . Solu-

tion of Equations (4) and (5) and integration of Equation (9) required the use

n=
after eight terms could maintain an accuracy of 1 in 106 in the boundary :

; - % - = - -
' of the irrational terms (2'z")%, (z'z")" 2 , and (z'z") L which were
! convenient%y represented by Taylor series of the

4 .
Z type Gén(c "t An), c.f. Equation (15).In all cases truncation .
i “
|
i
!

values of these expansions. Equation (5) produced two sets of equations, the *

sotution of one of which is given by

—.0 = + -
2on-1 n,lmal €n 3ma2n+3 + <Sn,2mS 6n,l D
; n>1 (13)
a,. = 0
where m = -0.05. It is easy to see from Equation (13) that, if either
an or ¢ is truncated, the values of individual an can be easily deter-

mined in terms of c, Because of the small value of m, the final results

converged within 1 in 10 4 when the ga beyond n = 13 were truncated. unce
n

h%‘#: “"h%" c

the g were determined, the could be determined using the other set ot
n n

equations. However, this procedure was not necessary since the alternative

procedure for accomplishing the solution, described in the next paragraph, was

more direct.

The a and Taylor expansion of \/Z'Z' were substituted in Equation (4)
n
to obtain c, given by

)
€;p-1 =0 s m21
5 . 5
= k .
4n (Z Pank A >s/ > g A° 3 4>n >0 (14)
k=1 k=0
4 . 4
= k .
" ©4n-2 (Z Pln-2),k A )P 2 5 A 5 62021
¢ k=1 k=0 )




- - ety =

where pn ’ qn , and rn are known coefficients but are not included here.

Once the €, Were obtained, the problem was basically solved as a func-
tion of the area of reinforcement A, The ¢, were substituted in Bquation (6)
to obtain P 2" 2 which, in turn, was substituted in Equation (9) to
obtain VO . The stresses 00l R 08 , and TQB could be obtained using
Equations (2) and (3). In order to integrate V0 , the following Taylor

expansions were used:

8
v sl 4n -4n
(z 2) -Z le(o +0 )
n:O (15)
1 8 4 4
1= -1 _ n -4n
(z z ) = Z Mlm(o + 0 )
n=()
These expansions, with the now known P\ /z'Z', yielded
8
P = Z Pzncos 2nRB
n=0
. 8 (16)
[ S 3
P(z 2=
(z z ) Z Q2ncos 2nf
n=0
which were used to obtain the integral
2 211 9
1= V dg = —5 + 2(1-v)I, + 4(1+V)1 an
0 2 3
) A
where
2 1 2 2 W
= T -
I1 2E Po + 2 ’ p2n
n=1
T 2 1 8 2 ,
L= (% * 32 %, (18)
n=]
8 8
2 2 2
1 = I h
3 2E “o Z (2nP2n) + z Zn MlonPZn + z MbnRAn
n=1 n=l n=1 }

The Rn , given as sums of products p p , are coefficients of cos nf in
2P mn
the expression EY) + The minimum value of I, which in Equation (17) is

a function of A, S, and D only, was determined by simply evaluating 1 at

10




various values of A for a selected set of values of § and D. In fact, the
three cases considered were the isotropic case (S = .5, D = 0), the uniaxial
case (S = .25, D = -.5), and the pure shear case (S =0, D =-1). The
corresponding A's at which the minimum values of I occurred were 0.90, 0.41,

and 0.29. These minimum values of I could be directly compared to those of
2E

167 *
these three cases were found to be .2453, .1920, and .4771, respectively. It

reference (5), if they were first multiplied by The I values for

should be noted that since the value of m for all three cases was -0.05, the
initially wunreinforced shape is optimized only for the uniaxial caseS « The
minimization of I with respect to A for alLl three cases demonstrates that
there 1is also an optimum amount of reinforcement for those openings which do
not initially have an optimum shape. Table 2 gives the minimized values of 1,
within the constant, and the corresponding values of A for the uniaxial case

only.

TABLE 2 - MINIMIZED VALUES OF I AT OPTIMUM
VALUES OF A FOR A SQUARE OPENING

2E |
A 167 I

.000001 «36268
1 .24854
2 .20936
3 .19546
4 .19199
412 19195
o5 .19324
6 .19671
7 .20120
8 .20610
9 21109
0 +21600

— OO0 CCcCOCCcOOoCQCCC
.

As expected, the value of f%% I corresponding to A = ,00001 = U is the

same as that of reference (5) for A = 0 (unreinforced). Table 2 also snows

the variation of I with respect to A and its minimum point at A = ,4]2,

PR -
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Figure 1 shows the stresses 0(x , O , and Ta for a reinforced square-

8 8

like opening (m = -.05) with A = .412 and also, for comparisen, the equivalent
stress, o based on the strain energy theory of failure and the value
of 9g for the unreinforced opening subjected to uniaxial loading. The maximum
80°and

70°.

value, 1.43, of GB in the reinforced case occurs approximately at B

in the unreinforced case this maximum 2.47, occurs at approximately B

Since the amount of area removed is not a constant by definition, in the
case of a square opening with rounded corners, the percentage of area replaced
can not be a constant either. For convenience, however, it can be referred to
the half-width of the square. Thus the value of A should be divided by | + m,
i.e., 0.95, and multiplied by 100 to obtain the reinforcement expressed as a

percentage of the area removed.
CONCLUSIONS

I. It has been shown that for openings in plates an optimum amount of rein-

forcement exists which corresponds to a minimum value of a strain energy

related integral.

2. It can be conjectured that the values of strain energy densities around a
reinforced opening are relatively smooth when this strain energy related

integral is a minimum.

3. The actual optimum values of reinforcement for a circular opening were
found to be 142%, 44.3%, and 29.2% of the area removed by the opening for

isotropic, uniaxial, and pure shear loadings, respectively.
4, The optimum values of reinforcement for a square-like opening were found

to be 94.7%, 43.4%, and 30.5% of the area removed by the opening for iso-

tropic, uniaxial, and pure shear loadings, respectively.

12
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